Source code for nestedlife.lifetable
"""Source module to create ``LifeTable`` space from.
This is a source module to create ``LifeTable`` space and its
sub spaces from.
This module is passed to ``import_module`` method to create
a space that contains cells that defines life tables and commutation functions,
for a selected combination of ``Sex``, ``IntRate`` and ``MortalityTable``.
``MortalityTable`` and ``Sex`` are used in :py:func:`qx` below to identify
the mortality rates to be applied.
Example
Sample script::
from modelx import *
space = new_model().import_module(module=lifetable)
space.Sex = 'M'
space.IntRate = 0.03
space.MortalityTable = lambda sex, x: 0.001 if x < 110 else 1
References:
* `International actuarial notation by F.S.Perryman <https://www.casact.org/pubs/proceed/proceed49/49123.pdf>`_
.. rubric:: Project Templates
This module is included in the following project templates.
* :mod:`simplelife`
* :mod:`nestedlife`
.. rubric:: References in Sub
Attributes:
Sex: 'M' or 'F' to indicate male or female column in the mortality table.
IntRate: The constant interest rate for discounting.
MortalityTable: The ultimate mortality table by sex and age.
"""
[docs]def disc():
"""The discount factor :math:`v = 1/(1 + i)`."""
return 1 / (1 + IntRate)
[docs]def lx(x):
"""The number of persons remaining at age ``x``. """
if x == 0:
return 100000
else:
return lx(x-1) - dx(x-1)
[docs]def dx(x):
"""The number of persons who die between ages ``x`` and ``x+1``"""
return lx(x) * qx(x)
[docs]def qx(x):
"""Probability that a person at age ``x`` will die in one year."""
return MortalityTable(Sex, x)
[docs]def Dx(x):
"""The commutation column :math:`D_{x} = l_{x}v^{x}`.
"""
return lx(x) * disc ** x
[docs]def Cx(x):
"""The commutation column :math:`\\overline{C_x}`.
"""
return dx(x) * disc**(x+1/2)
[docs]def Nx(x):
"""The commutation column :math:`N_x`."""
if x >= 110: # TODO: Get the last age from the table
return Dx(x)
else:
return Nx(x+1) + Dx(x)
[docs]def Mx(x):
"""The commutation column :math:`M_x`."""
if x >= 110:
return Dx(x)
else:
return Mx(x+1) + Cx(x)
[docs]def Ax(x, f=0):
"""The present value of a lifetime assurance on a person at age ``x``
payable immediately upon death, optionally with an waiting period of ``f`` years.
.. math::
\\require{enclose}{}_{f|}\\overline{A}_{x}
"""
if Dx(x) == 0:
return 0
else:
return Mx(x+f) / Dx(x)
[docs]def Axn(x, n, f=0):
"""The present value of an assurance on a person at age ``x`` payable
immediately upon death, optionally with an waiting period of ``f`` years.
.. math::
\\require{enclose}{}_{f|}\\overline{A}^{1}_{x:\\enclose{actuarial}{n}}
"""
if Dx(x) == 0:
return 0
else:
return (Mx(x+f) - Mx(x+f+n)) / Dx(x)
[docs]def Exn(x, n):
""" The value of an endowment on a person at age ``x``
payable after n years
.. math::
{}_{n}E_x
"""
if Dx(x) == 0:
return 0
else:
return Dx(x+n) / Dx(x)
[docs]def AnnDuenx(x, n, k=1, f=0):
""" The present value of an annuity-due.
.. math::
\\require{enclose}{}_{f|}\\ddot{a}_{x:\\enclose{actuarial}{n}}^{(k)}
Args:
x(int): age
n(int): length of annuity payments in years
k(int, optional): number of split payments in a year
f(int, optional): waiting period in years
"""
if Dx(x) == 0:
return 0
result = (Nx(x+f) - Nx(x+f+n)) / Dx(x)
if k > 1:
return result - (k-1) / (2*k) * (1 - Dx(x+f+n) / Dx(x))
else:
return result
[docs]def AnnDuex(x, k, f=0):
"""The present value of a lifetime annuity due.
Args:
x(int): age
k(int, optional): number of split payments in a year
f(int, optional): waiting period in years
"""
if Dx(x) == 0:
return 0
result = (Nx(x+f)) / Dx(x)
if k > 1:
return result - (k-1) / (2*k)
else:
return result