LifeTable¶
Commutation functions and actuarial notations
The LifeTable
Space includes Cells to calculate
commutation functions and actuarial notations.
LifeTable
is parameterized with
Sex
, IntRate
and TableID
. TableID
and
Sex
are used in qx()
below to identify
the mortality rates to be applied.
Example
>>> fastlife.LifeTable['M', 0.03, 3].AnnDuenx(x=30, n=10)
8.752619688735953
>>> fastlife.LifeTable['F', 0.03, 3].qx(x=50)
0.00196
>>> fastlife.LifeTable.MortalityTables()
1 2 3 4
M F M F M F M F
0 0.00246 0.00210 0.00298 0.00252 0.00345 0.00298 0.00456 0.00383
1 0.00037 0.00033 0.00045 0.00034 0.00051 0.00044 0.00069 0.00059
2 0.00026 0.00023 0.00032 0.00025 0.00038 0.00030 0.00051 0.00041
3 0.00018 0.00015 0.00022 0.00018 0.00027 0.00020 0.00037 0.00028
4 0.00013 0.00011 0.00016 0.00013 0.00021 0.00014 0.00029 0.00021
.. ... ... ... ... ... ... ... ...
126 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
127 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
128 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
129 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
130 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
[131 rows x 8 columns]
References
Space Parameters
-
Sex
¶ ‘M’ or ‘F’ to indicate male or female column in the mortality table.
-
IntRate
¶ Constant interest rate for discounting.
-
TableID
¶ ID of an ultimate mortality table by sex and age.
References
-
MortalityTables
¶ PandasData object holding the data of mortality tables. The data is read from MortalityTables.xlsx. Defined also in
fastlife.model.LifeTable
,fastlife.model.Input
andfastlife.model.Projection.Assumptions
Cells
|
The present value of an annuity-due. |
|
The present value of a lifetime annuity due. |
|
The present value of a lifetime assurance on a person at age |
|
The present value of an assurance on a person at age |
|
The commutation column \(\overline{C_x}\). |
|
The commutation column \(D_{x} = l_{x}v^{x}\). |
|
The value of an endowment on a person at age |
|
The commutation column \(M_x\). |
|
The commutation column \(N_x\). |
|
The discount factor \(v = 1/(1 + i)\). |
|
The number of persons who die between ages |
|
The number of persons remaining at age |
|
Probability that a person at age |
-
AnnDuenx
(x, n, k=1, f=0)[source]¶ The present value of an annuity-due.
\[\require{enclose}{}_{f|}\ddot{a}_{x:\enclose{actuarial}{n}}^{(k)}\]- Parameters
x (int) – age
n (int) – length of annuity payments in years
k (int, optional) – number of split payments in a year
f (int, optional) – waiting period in years
-
AnnDuex
(x, k, f=0)[source]¶ The present value of a lifetime annuity due.
- Parameters
x (int) – age
k (int, optional) – number of split payments in a year
f (int, optional) – waiting period in years
-
Ax
(x, f=0)[source]¶ The present value of a lifetime assurance on a person at age
x
payable immediately upon death, optionally with an waiting period off
years.\[\require{enclose}{}_{f|}\overline{A}_{x}\]
-
Axn
(x, n, f=0)[source]¶ The present value of an assurance on a person at age
x
payable immediately upon death, optionally with an waiting period off
years.\[\require{enclose}{}_{f|}\overline{A}^{1}_{x:\enclose{actuarial}{n}}\]