Generating model points with duration#
This notebook is modified from generate_model_points.ipynb and generates the sample model points for the BasicTerm_SE
and BasicTerm_ME
model, by using random numbers. The model ponints have the duration_mth
attribute, which indicates how many months elapsed from the issue of each model point to time 0. Negative duration_mth
indicate future new business.
Columns:
point_id
: Model point identifierage_at_entry
: Issue age. The samples are distributed uniformly from 20 to 59.sex
: “M” or “F” to indicate policy holder’s sex. Not used by default.policy_term
: Policy term in years. The samples are evenly distriubted among 10, 15 and 20.policy_count
: The number of policies. Uniformly distributed from 0 to 100.sum_assured
: Sum assured. The samples are uniformly distributed from 10,000 to 1,000,000.duration_mth
: Months elapsed from the issue til t=0. Negative values indicate future new business. Uniformly distributed from -36 to 12 timespolicy_term
.
Number of model points:
10000
[68]:
import numpy as np
from numpy.random import default_rng # Requires NumPy 1.17 or newer
rng = default_rng(12345)
# Number of Model Points
MPCount = 10000
# Issue Age (Integer): 20 - 59 year old
age_at_entry = rng.integers(low=20, high=60, size=MPCount)
# Sex (Char)
Sex = [
"M",
"F"
]
sex = np.fromiter(map(lambda i: Sex[i], rng.integers(low=0, high=len(Sex), size=MPCount)), np.dtype('<U1'))
# Policy Term (Integer): 10, 15, 20
policy_term = rng.integers(low=0, high=3, size=MPCount) * 5 + 10
# Sum Assured (Float): 10000 - 1000000
sum_assured = np.round((1000000 - 10000) * rng.random(size=MPCount) + 10000, -3)
# Duration in month (Int): -36 < Duration(mth) < Policy Term in month
duration_mth = np.rint((policy_term + 3) * 12 * rng.random(size=MPCount) - 36).astype(int)
# Policy Count (Integer): 1
policy_count = np.rint(100 * rng.random(size=MPCount)).astype(int)
[69]:
import pandas as pd
attrs = [
"age_at_entry",
"sex",
"policy_term",
"policy_count",
"sum_assured",
"duration_mth"
]
data = [
age_at_entry,
sex,
policy_term,
policy_count,
sum_assured,
duration_mth
]
model_point_table = pd.DataFrame(dict(zip(attrs, data)), index=range(1, MPCount+1))
model_point_table.index.name = "policy_id"
model_point_table
[69]:
age_at_entry | sex | policy_term | policy_count | sum_assured | duration_mth | |
---|---|---|---|---|---|---|
policy_id | ||||||
1 | 47 | M | 10 | 86 | 622000.0 | 1 |
2 | 29 | M | 20 | 56 | 752000.0 | 210 |
3 | 51 | F | 10 | 83 | 799000.0 | 15 |
4 | 32 | F | 20 | 72 | 422000.0 | 125 |
5 | 28 | M | 15 | 99 | 605000.0 | 55 |
... | ... | ... | ... | ... | ... | ... |
9996 | 47 | M | 20 | 25 | 827000.0 | 157 |
9997 | 30 | M | 15 | 81 | 826000.0 | 168 |
9998 | 45 | F | 20 | 10 | 783000.0 | 146 |
9999 | 39 | M | 20 | 9 | 302000.0 | 11 |
10000 | 22 | F | 15 | 18 | 576000.0 | 166 |
10000 rows × 6 columns
[70]:
model_point_table.to_excel("model_point_table.xlsx")