Note
Click here to download the full example code
Discount factor convergence#
The convergence of the stochastic discount factors generated by the Hull-White model.
The charts below examine the convergence of the discount factors
for various combinations of
See also
Overview of BasicHullWhite notebook in the
economic
library
import modelx as mx
import matplotlib.pyplot as plt
HW = mx.read_model("BasicHullWhite").HullWhite
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
fig.suptitle(r"$a=$" + str(HW.a))
for sigma, (h, v) in zip([0.05, 0.075, 0.1, 0.125], [(0, 0), (0, 1), (1, 0), (1, 1)]):
HW.sigma = sigma
axs[h, v].set_title(r"$\sigma=$" + str(sigma) + r", $\sigma/a=$" + "%.2f" % (sigma/HW.a))
axs[h, v].plot(range(HW.step_size+1), [HW.mkt_zcb(i) for i in range(HW.step_size+1)], "b-")
axs[h, v].plot(range(HW.step_size+1), HW.mean_disc_factor(), "r--")
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
fig.suptitle(r"$\sigma=$" + str(HW.sigma))
HW.sigma = 0.1
for a, (h, v) in zip([0.05, 0.1, 0.15, 0.2], [(0, 0), (0, 1), (1, 0), (1, 1)]):
HW.a = a
axs[h, v].set_title(r"$a=$" + str(a) + r", $\sigma/a=$" + "%.2f" % (HW.sigma/HW.a))
axs[h, v].plot(range(HW.step_size+1), [HW.mkt_zcb(i) for i in range(HW.step_size+1)], "b-")
axs[h, v].plot(range(HW.step_size+1), HW.mean_disc_factor(), "r--")
Total running time of the script: ( 0 minutes 0.940 seconds)